找回密码
 立即注册

详述锂电池快充技术及其发展

能源资讯(稿源) 2023-1-23 18:03 No.1433

背景简介

相比于传统的燃油车,里程焦虑、充电时间长等问题成为阻碍电动汽车发展的主要问题。因此,快速充电(Fast Charging)能力的提升成为电池厂商和整车厂普遍的发展目标。但是,研究表明低温、大倍率充电会引起电池的容量与输出功率等性能加速衰减;另一方面,电池在充电期间产生的大量热难以均匀、有效地散去,也会引起衰减加速以及其他安全问题。图1展示了从原子层级到车用系统层级下影响锂离子电池快速充电的因素。


详述锂电池快充技术及其发展

图 1 不同层级下影响锂离子电池快速充电的因素

对于终端用户充电的基本诉求:

1)充电要快

2)不要影响电芯寿命

3)尽量省钱,充电机放出来多少电,尽量都充到我的电池里。

什么是快充

所谓快充就是在很短的时间内给电池以最快的充电速度,将电池电量充至满电或者接近满电的充电方法,但是需要保证锂离子电池能够达到规定的循环寿命、相关安全性能以及电性能。

美国先进电池联盟(United States Advanced Battery Consortium, USABC)对快充动力电池提出了具体指标,要求在15 min 内充满电池总电量的 80%。对于要求里程为 400 km 的电动汽车而言,至少需要 320 kW 的充电功率为 100 kW·h 的电池包进行快速充电才 能满足 USABC 的标准要求。

电池快速充电的原理

理想的电池应表现出长寿命、高能量密度和高功率密度特性,以在任何地点任何温度下都能够快速充电和补电以从而满足电动汽车长距离行驶的要求。但是,这些物理特性之间存存在trade-off关系,材料和设备的温度的影响决定了电池的使用阈值。温度下降时,充电速率和最大电压都应减小以确保安全性,这使得温度成为快充的关键限制因素。其中,随着温度降低,析锂的风险会显著增加。尽管很多研究者指出析锂常发生于温度低于25℃,但在高温尤其是充电倍率高、能量密度高时也容易发生。此外,快充效率和温度关系也十分密切,50kW的充电桩在25℃的充电效率为93%,但在-25℃的充电效率低至39%,这主要是因为BMS在低温下会限制额定功率。

常见的锂离子电池主要由石墨负极、锂金属氧化物正极、电解液、集流体、多孔隔膜构成。如图2所示,充电时Li+从正极经过电解液传输到负极,其中主要的传输路径有:1)经过固态电极;2)经过正负极的电极/电解质界面;3)经过电解液,包括Li+的溶剂化和去溶剂化。但电池的不当使用条件往往会引起一系列影响性能和寿命的副反应。此外,充放电倍率,电池内阻和电池极化等都会影响电池的热特性,如增加产热,降低充电效率和安全性等。


详述锂电池快充技术及其发展

图 2 锂离子传输示意图 a)充电,b)放电

大量研究表明正极的衰减和正极CEI膜的增长对传统锂离子系统的快充速度没有影响,因此负极成为充电过程中的主要关注对象。特定情况下,锂金属可能会持续析出成锂枝晶,甚至会刺穿隔膜造成内短路。影响锂沉积和沉积结构的因素包括锂离子在负极的扩散速率,负极界面处的电解液浓度梯度,集流体的金属盐沉积和电极/电解质界面的副反应。研究表明,析锂时负极的表现可以归结于析锂一开始的电流对负极面密度内阻的影响。通过电池设计降低负极内阻,对提高电池的快充能力十分重要。此外,温度影响也十分重要,过低或过高的温度都会被认为对电池不利,但快充时电池温度较高会有利于自身的平衡,尤其对于高比能量电池。电极厚度对充电性能的影响也需要被关注。薄电极常被认为可以进行理想的锂离子传输,当电极增厚时,在电极/电解质界面保证足够的锂离子浓度以维持过电位稳定并减少析锂的可能变得很重要。厚电极电池在快充过程中,锂盐可能会在集流体处沉积,导致电极利用的不平衡以及隔膜负极的电流密度的增加。

衰减影响

4.1)温度影响

锂离子电池的产热可分为可逆和不可逆过程。其中不可产热Qirr的表达式如下:


详述锂电池快充技术及其发展

U为开路电压,Vbat为电池电压,I为电流(充电时)。

大部分的不可逆热来自内阻产热:


详述锂电池快充技术及其发展

其中R为电池内阻。焦耳热与电流的平方成正比,因此快充时电流增大,不可逆热会显著增加。

可逆热Qrev来源于电化学反应中的熵变,也被称为熵热,其表达式为:


详述锂电池快充技术及其发展

锂离子电池中,软包、圆柱、方壳电池的热量分布与散失是不均匀分布的:例如一些电池材料的面导热能力较差,因此其热量相对于表面会更多积累在核心位置。此外,电流密度和产热速率在电池不同位置也不相同。这些不一致性在大尺寸电池上被进一步放大。如图3所示,圆柱电池内部中心的温度要明显高于表面。对于软包或方型电池而言,如图4和图5所示,极耳处的温度要明显高于其他位置。此外,由于正极铝集流体比负极铜集流体的电阻更大,正极极耳温度常高于负极极耳。


详述锂电池快充技术及其发展

图3 圆柱电池内部温度和电流密度的分布仿真结果



详述锂电池快充技术及其发展

图 4 软包电池在5C恒流放电时的表面温度变化

软包电池在5C恒流放电时的表面温度变化:t=250s的a)仿真结果和b)测量结果;t=667s的 c)仿真结果和 d)测量结果;e)内部温度的3D分布


详述锂电池快充技术及其发展

图 5 LFP电池在a)1C、b)2C和c)5C时放电的温度分布图

产热的不均匀分布不仅存在于电池单体中,电池包级别更需要注意热管理系统的设计,因为其对Pack内温度的分布有显著影响。随着时间推移,电池单体的不同老化路径同样会对Pack的产热均一性造成很大影响,这是由于不同电池内阻的增加幅度不同。

锂离子电池中很多老化机理和温度相关。高温下,SEI膜在负极加速生长,变得更加疏松和不稳定。低温下,离子扩散和反应速率变慢,析锂和锂枝晶生长的可能性增加。高温下几乎所有的老化反应都会加速;低温可以降低副反应速率但也会降低活性物质的扩散,如果锂金属析出则会加速衰减。此外,低温极化增大会导致产热增加,降低能量效率。在大部分工况下,负极/电解质界面的SEI膜增长是主要的衰减机理。SEI膜会使电池内阻增加,功率降低,进而导致容量衰减。高温下(60˚C或更高温)SEI组分会溶解和分解,破坏负极保护膜的完整性。在极端情况下,电池温度超过安全阈值时,可能会引起热失控。

4.2)析锂影响

析锂指电解液中的锂离子在负极上沉积为锂金属的法拉第副反应,而非嵌入负极颗粒的过程。负极电位降到Li/Li+以下时,析锂就可能发生。析锂过程中,锂金属首先会形成液滴状以降低表面能,表面金属和电解液快速反应生成SEI膜。随着更多锂在SEI膜下沉积直至SEI膜破裂,锂表面又生成新的SEI膜,锂盐浓度逐渐降低,锂金属开始垂直于极片表面生长,形成锂枝晶。锂枝晶生长被认为是最坏的副反应之一,如果枝晶刺破隔膜到达正极,内短路会使电池快速产热。锂金属相比负极更加活泼,进一步带来内部副反应,导致SEI增长,产气和电解液溶解等问题。

研究者们提出一些析锂观测的模型。包括Fuller,Doyle和Newman基于P2D模型的析锂模型,以及Arora,Doyle和White提出的可逆锂的嵌回过程。在此基础上,Perkins提出了面向控制的降阶模型;Hein和Latz提出了三维微观结构解析模型。Ren同时考虑了可逆锂的重嵌以及不可逆锂(死锂)在电池充电过程的反应。

无损的析锂观测技术对于实际的电池应用很重要。一般可用于析锂表征的检测包括SEM,TEM,NMR和XRD等,但这些手段都需要对电池进行破坏或使用特殊电池构型。常用的无损析锂观测利用电池的外部特性,包括老化速率,锂回嵌的电压平台,模型预测等方法。如图6所示,基于老化特征的析锂检测手段包括(a)阿伦尼乌斯方程,(b)衰减过程的容量和阻抗变化分析,(c)非线性频域响应分析和(d)库伦效率分析


详述锂电池快充技术及其发展

图6 基于老化特征的析锂检测手段

部分析出的锂会重新嵌入负极,或在放电过程溶出

充电结束后的弛豫过程或紧接的放电过程会产生新的电压平台,如图7所示。电压微分(DVA)和容量微分(ICA)有助于寻找电压平台,但这些方法需要小倍率的放电,大电流会增大极化,覆盖电压曲线上的析锂信号。锂析出和重新嵌入的过程也可能会引起异常的产热峰值,作为析锂的信号之一。

电池厚度的增加也可能导致析锂,但是相关机理还需进一步研究。用电化学模型预测析锂通常取决于充电条件。然而这些模型太过复杂并需要大量计算,其需要进一步简化以实现在线检测。少数方法可以在电池异常充电后实现定量化的原位析锂检测。作者认为基于异常电压平台的探测手段最有希望实现应用,但其距离真正应用还有很高的知识和技术壁垒。


详述锂电池快充技术及其发展

图7 基于锂回嵌的析锂检测

a)CC-CV充电和静置过程中的过电势变化模拟。

阶段I,负极颗粒上没有锂沉积;

阶段II,锂沉积开始发生;

阶段III,部分可逆的锂重新嵌入负极或溶出,剩余的变成死锂;

阶段IV,平衡态,死锂不再参与后续循环;

b) 电压微分分析(DVA);

c)微分容量分析(ICA)

4.3)机械影响

机械粉化是另一个快充导致的重要老化现象,并已经在多种电极材料(石墨、NMC、LCO、 NCA、Si等)中得到证实。根据尺度可将机械衰减分为以下部分:电极颗粒内部的破裂、电极颗粒与导电炭和粘接剂的分离、活性材料与集流体的分离、电极分层。这些现象发生的主要原因是快充过程中的锂浓度的梯度分布造成组分间的应力不匹配。当能量释放速率或应力超过一定值时,颗粒就会出现裂纹,同时伴随着SEI/CEI膜的破裂。快充引发的一次颗粒间的应变不能相互匹配时,就会使得电极颗粒之间或颗粒与导电炭和粘接剂间失去接触。电极材料与集流体之间的应变不匹配也会造成活性物质脱落。高倍率会引发严重的电极板间电流密度分布不均匀,如果没有外部压力,电极板间就可能发生分层。

机械衰退对电池性能的影响可以分为活性材料损失(LAM)、活性锂损失(LLI)和阻抗增加。首先,裂纹会导致电接触变差;其次,裂纹会暴露更多的新鲜表面与电解液反应,快充带来的高温会加速上述副反应。这些反应又加速了SEI的生长,加剧阻抗增加、LAM和LLI等。最后,电解液的消耗会降低电极表面的润湿性,阻碍离子传输。相关的正反馈机制可以如下描述:大倍率电流导致裂纹形成;裂纹加剧了电子与离子传输速率差异,因为离子可以通过电解液传输至裂纹处而电子不能,进而导致荷电态的不均匀,进一步加剧裂纹产生。此外,关于颗粒尺寸对快充过程的机械衰减影响、高倍率对二次颗粒破裂的影响、根据机械衰减限制优化快充策略等方面的研究,作者也做了简要介绍。

总的来说,快充条件下的机械衰退还有许多问题需要研究。针对此问题的不同实验产生了不同的结论,在一些重要问题上的观点还存在争议,如充电倍率与裂纹产生速率的关系。机械衰退通常也很难与其它老化机理解耦。与SEI增长或析锂等老化机理相比,很少有模型研究了大电流下的机械效应,其中极少一部分模型得到了实验验证。模型参数和边界条件的确定成为阻碍机械模型发展的主要问题。

多尺度的快充性能设计

快充诱导的老化和老化模式受电池材料组分(电极材料和电解液的本征特性)、工况条件(高倍率充放电,极端电压和温度)、电池生产过程和Pack设计等多种因素的影响。多尺度的设计和复合手段将有助于发展高性能的快充电池。

5.1 材料方面

在锂离子电池中,Li+的扩散过程如图1所示,主要包括Li+从正极材料中脱出、Li+在电解液中迁移、Li+通过隔膜、Li+嵌入负极以及Li+在负极材料内部的扩散。提高锂离子电池的快充性能需要在这几方面进行研究。如图8


详述锂电池快充技术及其发展

图8 锂离子电池充放电模型图

电极材料选择合适的电解液和电极材料使其发挥出高比容量和高倍率性能一直是电池设计中极具挑战性的难题。一般地,负极材料内部的固相扩散系数相对较小,限制了负极材料电池的大电流充放电能力,成为电极反应的控制步骤。Li+在电场和浓度梯度的作用下由正极迁移、扩散至负极,这其中经历了液相扩散,电解液的浓度对于快充性能的提升也有明显的影响。隔膜的孔隙率决定了Li+迁移量,隔膜孔隙率小,则大电流充电容易造成堵孔,隔膜的厚度决定Li+扩散的距离,隔膜越薄,其扩散的距离越小。


5.1.1 正极材料

正极材料引起的内阻在整个锂离子电池内阻中所占的比例最大,而锂离子电池的快充能力与电池内阻成反比,因此合理选择具有较低内阻的正极材料是实现电池快充的重要条件。通常以锂离子在正极材料中的扩散系数(Dli+)为依据对正极材料的快充能力进行评估。如层状钴酸锂(LiCoO2, LCO)在众多层状氧化物正极材料中具有最佳的锂扩散系数(Dli+ = 1 × 10−9 cm2 /S),因此 LCO 正极材料显示出超高的倍率性能,是快充电池理想的备选材料。但是 LCO 材料具有较低的容量发挥和居高的价格,导致该材料不适合用于兼具高能量密度和快充特性的电池开发。镍钴锰三元过渡金属氧化物正极材料 [LiNi0.5Co0.2Mn0.3O2(NCM523),LiNi0.6Co0.2Mn0.2O2 (NCM622),LiNi0.8Co0.1Mn0.1O2(NCM811)]的锂离子扩散系数要明显低于 LCO 正极材料的锂离子扩散系数。然而,可以通对正极材料改性处理来提高材料的锂离子扩散系数。

正极材料的结构对材料的电化学性能也有重要的影响。层状三元过渡金属氧化物正极材料作为当今正极材料的重要选择。过渡金属元素位于八面体中心,其中氧原子位于八面体的 6 个顶点。这些八面体结构 互相交叉构成层状材料的插锂主体,锂离子在构成的两层插锂主体间嵌入脱出。锂离子只能在八面体所在的面间嵌入脱出,即锂离子只能沿着移动进行嵌入脱出。因此制备具有更多面作为表面的材料将能有效地提高三元正极材料锂离子的嵌入脱出速度,从而提高正极材料的快速充电性能。

磷酸铁锂材料的本征电导率较三元材料低,仅为三元材料的十分之一左右,因此要对磷酸铁锂材料进行导电性优化才能满足快充的需求。可以采用对磷酸铁锂正极纳米化、表面碳包覆、离子掺杂等方法来改善材料的电化学性能, 实现快速充电需求。


5.1.2 负极材料

当前已有许多研究致力于发展无枝晶的快充负极材料,如碳基材料、金属氧化物复合材料和合金等已经取得一定程度的成功。传统的石墨负极电位非常接近锂的氧化还原电位,可以使电池表现较高的能量密度,但同时增加析锂的可能性(石墨的层状结构使得Li+必须从石墨的端头嵌入,继而扩散至颗粒内部,增长了扩散路径。小的层间距使得Li+的扩散速率较低,在进行大倍率充电时,Li+容易在石墨表面沉积形成大量锂枝晶)。因此改善负极材料成为提高锂离子电池性能的重要途径之一。

目前常用表面包覆改性来改善材料的性能。软硬碳的层间距比石墨稍大,有利于锂离子的扩散,通常石墨表层包覆软硬碳改善石墨的电化学性能,即通过表面修饰作用,在石墨表面形成无定形结构的碳层,增加了锂离子通道,改善锂离子扩散,提升其倍率性能。在设计快充型锂离子电池时,通常采用小颗粒以及软硬碳包覆的负极材料(提升负极脱嵌锂速度)。

改善负极材料的另一种方法是加快锂离子在负极材料中的扩散速度。比较有效的方法是制备具有多通道石墨负极材料,确保电解液能够充分浸润负极材料,并且缩短锂离子传输路程,达到提高锂离子扩散速度的目的。

此外,LTO由于不会析锂且不会形成SEI膜,被认为有望用于开发长寿命的超级快充电池。另一方面,LTO的电位较高,作为负极材料会降低全电池的电压,限制电池的能量密度。一些金属氧化物和合金材料也具有较好的能量和功率特性,但受限于严重的体积变化、粉化和团聚等现象,其循环稳定性通常较差。

其它类石墨烯的二维材料具有高的表面积/质量比和独特的物理化学特性,缩短了离子传输路径,加快电子传输和增加锂离子活性位点,被认为是有潜力的负极材料。这些材料主要包括过渡金属氧化物、过渡金属硫化物、金属碳化物和氮化物。其中钛和铌基的氧化物电化学窗口通常在1.0-1.6V之间,与当前的商业电解液匹配,非常合适用于负极材料。最近Goodenough课题组提出了高倍率负极材料TiNb2O7具有与石墨媲美的理论比容量,并能实现快速的锂离子脱嵌和长循环寿命,有望取代LTO成为新的负极材料。在纳米尺度上设计合适的电极结构也能实现高功率和能量密度,如2D中空结构、core-shell结构、yolk-core结构等。将2D材料集成到宏观的3D结构内也可以增强材料的电子和离子在电极的传输。金属锂是最能提高电池能量密度的负极材料之一,但受限于纯金属锂箔的低比表面积,其功率性能较差。将锂金属引入3D结构框架以加快离子扩散速率,可以明显改善其倍率性能。除了负极材料的选择、改性和纳米结构设计外,电极/电解质界面也会极大影响负极材料的性能。通过优化负极/电解质界面例如无定形碳包覆石墨形成均匀SEI膜,选择合适的锂盐和共溶剂等方法也可以抑制锂枝晶的生长。材料的选择与改性无疑是未来研究的重点

硅碳负极材料能够提高电芯的能量密度,然而硅碳负极材料在快充过程中易于发生颗粒的破裂而影响电芯的循环寿命。硅碳负极因为硅在充电过程中的膨胀,将导致电极中导电剂与硅碳主材之间的导电网络变差,进而影响材料的倍率性能。为了满足硅碳电池快充的要求,需要对硅碳负极电池在导电剂方面进行优化。常用导电 剂按照导电网络接触划分可以分为点接触和线接触。传统的点接触导电剂 SP 炭黑只能通过增加导电剂数量提高硅碳负极材料倍率性能,但这将会降低电池能量密度并且提高电池成本。线接触的碳纳米管在不增加导电剂用量的前提下,可以借助其线性 结构优势,改善硅碳负极在膨胀过程中的导电剂与负极主材接触不佳的缺点。硅碳负极中掺入碳纳米管导电剂后有效提高了电池的容量也使电池倍率性 能大幅提升。


5.1.3 电解液

电解液对于快充锂离子电池的性能影响很大。要保证电池在快充大电流下的稳定和安全性,此时电解液要满足以下几个特性:A)不能分解,B)导电率要高,C)对正负极材料是惰性的,不能反应或溶解。如果要达到这几个要求,关键要用到添加剂和功能电解质。比如三元快充电池的安全受其影响很大,必须向其中加入各种抗高温类、阻燃类、防过充电类的添加剂保护,才能一定程度上提高其安全性。而钛酸锂电池的老大难问题,高温胀气,也得靠高温功能型电解液改善。电解液需要与电芯体系相适应才能实现设计要求,因此电解液配方的设计和研究必须围绕不同的电芯体系展开

高浓度电解液表现出优异的倍率性能。有实验研究在三甲基磷酸(TMP)溶剂中制备了5mol/L锂双(氟磺酰)亚胺(LiFSI)组成的磷酸盐基电解液,其与石墨负极材料具有良好的相容性,且形成了稳定的富LiF的SEI层,有效阻碍锂金属电池中锂枝晶的生长。另有实验研究在传统碳酸乙烯酯基电解液中添加丙腈或丁腈助溶剂,其显著增强了电解液的电导率,并极大地促进了电池在低温(-20℃)的大倍率充电能力,这意味着电池可以在低温下实现快充。为了更好地实现快充,应选择具有高浓度、高电导率以及低粘度的电解液(减小电池极化以及内阻,增大锂离子的迁移速度)


5.1.4 隔膜

隔膜在锂离子电池中同样扮演重要的角色,隔膜的作用主要体现在以下三方面:一是绝缘作用以防止正负电极间的直接接触;二是储存电解液作用提供足 够的孔隙,保证电解液在这些孔隙储存;三是提供锂离子传输孔道,确保锂离子在充放电过程中能够快 速通过隔膜。因此隔膜影响锂电池的电化学性能和安全性能。锂离子透过隔膜的速度影响电池的快速充电性能,因此合理地开发设计电池隔膜能够提高快充电池的性能。

隔膜的质量决定了电池的界面结构、内阻等,直接影响电池的倍率、循环以及安全性能等特性。为确保隔膜具有电子绝缘性、低电阻、高离子电导率、耐电解液腐蚀、高浸润性等性能,在选用隔膜时主要考察隔膜的厚度、孔隙率、透气率、浸润度、孔径、穿刺强度和热稳定性等指标。其中隔膜的厚度、孔隙率和透气度对锂离子电池快充影响较大。厚度薄,孔隙率大,透气度高时,锂离子从正极传输到负极的阻碍就小,充电过程中的极化作用就小。隔膜的厚度和孔隙率影响着锂离子电池的充电性能。在设计快充电池时,一般选择薄的和高孔隙率的隔膜。(减小锂离子传递的距离以及增加锂离子通过的速度)

纳米氧化铝陶瓷涂覆隔膜可提升隔膜的热稳定性,改善隔膜机械强度,防止隔膜收缩导致的正负极大面积接触;能提高其耐刺穿能力,防止电池长期循环过程中产生锂枝晶刺穿隔膜引发短路,并能中和电解液中少量的HF,防止电池气胀;陶瓷涂层的孔隙率大于隔膜的孔隙率,有利于增强隔膜的保液性和浸润性。因此陶瓷涂覆隔膜较非陶瓷隔膜可以更薄,从而改善锂离子电池快充性能和循环寿命。陶瓷涂覆隔膜正在大量地应用于锂离子电池中,是 解决锂离子电池安全性等问题的一个重要手段,也是锂离子电池隔膜发展的一个方向。


5.2 设计因素(电极设计)

电池单体和电池包设计除了材料选择及其微观结构设计,电极设计也对电池性能有重要影响。

锂离子电池的快充性能与电池的设计有密切的关系,极片涂布量、压实密度、铜箔铝箔的厚度、极耳的尺寸、极片的宽窄等均对电池的快充性能有很大的影响。电池面密度以及压实密度对电池的倍率、循环等性能影响比较明显,快充型锂离子电池需要低面密度设计,而压实密度过高或者过低均会导致其性能差,压实密度过高,极片活性物质被“压死”,导致其循环容量迅速跳水,而压实密度过低,导致其活性物质之间的接触不够,电池的阻抗较大,导致其快充性能较差。

有实验研究了不同箔材厚度对于锂离子电池性能的影响,厚的箔材由于其导电性更好,电池的阻值、倍率等性能均优于薄箔材,但是由于其厚度增加,势必会导致电池能量密度的降低。对于极耳与箔材的原理一致,横截面积越大,其阻值越小,另外,电池极片的长短、宽度以及电池的大小也会对电池的快充性能有一定的影响。(低涂布量、低压实密度对于锂离子电池的快充性能以及寿命均比较友好。)

提高孔隙率和负极厚度可以抑制析锂,但同时会降低能量密度。负极材料的多孔性对电池的快充性能有至关重要的影响作用,负极材料孔隙多有利于电解液渗透。孔隙多意味着电极极片材料的压实会小,导致电极片的电子导电性变差。因此合理设计电极孔隙对快充电池的性能有一定提升作用。同时电极的面密度也能对电池的快充性能产生重要的影响作用。设计具有快充特性电芯时,需要合理确定所用正负极片的孔隙率和面密度。上述事例中面密度的改变即是涂覆厚度的改变,电极孔隙率的改变即是电极压实密度的改变。压实密度相对低、涂覆厚度相对薄将有利于快充电池性能的提高。

负极与正极材料的容量比值(N/P)会显著影响锂沉积,商业锂离子电池中N/P常大于1,较高的N/P有助于减轻负极的机械应力,减少SEI形成和活性锂的损失。在NMC811/石墨电池中,N/P比会随着充电倍率的增加逐渐降低,这是由于石墨的面容量比NCM811的面容量随充电倍率的增加减小得更剧烈,N/P比在0.1C为1.15, 3C时为1.0, 4C时为0.5。研究表明,充电后的静置过程中,在负极主要区域析出的锂金属在浓度梯度的驱动下会扩散到负极凸出的部分。随后的放电过程中,正极边缘处会相应接收更多的锂。继续充电,多余的锂转移到正极边缘对应的负极和负极凸出区域。这会导致局部的锂浓度升高和电位降低的现象,增加了析锂的可能性。因此,负极凸出区域应该设计得尽量小以避免析锂。


5.3 结构设计因素

电池的几何参数也是影响快充能力的重要因素。电池的形状会影响电流密度和温度的分布,大尺寸的电池更有可能造成温度和电流的不均匀分布。极耳的位置、材料、结构和焊接工艺对于电流密度的均匀分布、限制局部产热和延缓老化非常重要。

锂离子电池的内部结构根据其制作方式主要分为4种:普通结构、极耳中置结构、多极耳结构、叠片结构。普通结构正负极只有一个极耳,极耳位于极片的一端,通过卷绕的方式制作;极耳中置结构极耳位于极片的中部,一般通过激光清洗、间隔涂布、贴胶带等方式处理,电池的内阻较小,倍率性能较好;多极耳卷绕极片有多个极耳,极耳位置根据设计各有不同,电池电阻更小,电池的倍率性能更好;叠片电池通过将极片裁切成特定的形状,通过正负极交替折叠制作,每层中都有一个极耳,叠片式电池的电极之间相当于是并联关系,卷绕式则相当于是串联,因此前者内阻要小的多,更适合用于功率型场合。

另外也可以在极耳数目上下功夫,解决内阻和散热问题。

总之,影响电池内部电荷移动和嵌入电极孔穴速率的因素,都会影响锂电池快速充电能力。


5.3.1 极耳中置结构

有实验研究了极耳位置对于锂离子电池性能的影响,极耳的位置对于锂离子电池内阻以及倍率有明显的影响,极耳处于正负极的中间时,电池的内阻以及倍率性能最好,其性能接近叠片工艺的电池。图9为极耳中置结构与正常结构的对比图,常规结构极耳位于极片的一端,极耳中置结构极耳位于电池极片的中部。


详述锂电池快充技术及其发展

图9 极耳中置结构与正常结构对比

表1为两种结构的电池性能差异,同一型号采用极耳中置结构以及非极耳中置结构电池内阻、直流电阻(DCR)相差较大,常规结构内阻达到30mΩ,极耳中置结构内阻只有17mΩ;50%荷电态下常规结构的DCR为56.6mΩ,极耳中置结构为47.4mΩ。


详述锂电池快充技术及其发展

表1 极耳中置结构与正常结构电池性能对比

在电池倍率性能方面,二者的小倍率性能差异不大,大倍率差异明显。其主要原因是极耳中置结构极耳在极片的中部,放电过程中电子从中间向两端扩散,电流较小时,载体通过电子能力足够,而大倍率时,电子数目过多,通道阻塞,导致其大倍率性能差,同时极片也会产热,导致其循环性能差。


5.3.2 多极耳卷绕

图10为多极耳卷绕结构与常规极耳结构,多极耳卷绕技术在载体中切割出固定的极耳形状,卷绕完成之后再将载体焊接极耳引出,形成多极耳电池。多极耳卷绕由于其极耳更多,且分布更均匀,这种结构的电池倍率性能更好,充放电温升更小,适合大功率设备。


详述锂电池快充技术及其发展

图10 常规极耳与多极耳卷绕结构

多极耳结构的优势有:进一步降低电池阻抗,提高电池大倍率充放电性能,支持5C~10C放电;有效降低电池高倍率放电下的温升,10C放电电池表面温升低于20℃;电池温度低,显著增加电池循环使用寿命。


表2为多极耳结构对比极耳中置结构的性能优势:多极耳卷绕电池的内阻比极耳中置电池小很多,其恒流充电容量占总容量的百分比也较大。


详述锂电池快充技术及其发展

表 2 多极耳结构与极耳中置结构电池性能对比

5.3.3 叠片技术

相比多极耳卷绕,叠片电池每层都引出一个极耳,此种结构制作的电池快充性能是目前各种结构中最高的。图11为叠片结构电池示意图。


详述锂电池快充技术及其发展

图11 叠片结构电池示意图

目前主流的极耳中置结构、多极耳卷绕、叠片技术均可以大幅度提高电池的快充水平以及循环寿命。


5.4 其他因素

5.4.1 导电网络的构建

通常采用导电性更好的材料作为导电剂添加剂,形成导电网络,这样能够进一步提升锂离子电池的快充性能。常见的导电剂有碳纳米管(CNT)、炭黑(SP)等。导电剂的加入量必须适当,过少可能不能构筑成有效的导电网络,过多会降低电极中活性物质的含量,使能量密度降低。构建导电网络能够优化电极材料的电学性能,对实现快充锂电池具有现实意义。

5.4.2 粘结剂与涂炭载体的影响

粘结剂作为锂离子电池的辅料,在电池中的用量非常少,但其对于电池性能的影响非常大,其主要作用是改善电池的阻值,提升电池的性能以及寿命。通过采用不同的合成方法以及调整SBR的表面可以提升电解液对于SBR的浸润性,达到提升电池的低温以及倍率性能的目的。

通过对锂离子电池集流体进行导电涂层改性,集流体与锂离子电池的活性物质之间的粘结力大幅度提升,电池的阻抗明显减小,可以明显提升锂离子电池的大倍率充放电性能。另外,在实际使用过程中,改性载体的使用还可以改善极片头尾厚度差异大的问题,可以进一步提升锂离子电池的寿命。

此外,电池Pack性能和单体性能之间的关系还不是很明确。尽管已有许多关于电池单体的快充模型,但很少有研究尝试将其扩充到Pack设计上,这是由于Pack设计时需要考虑更多的参数。快充电池Pack的设计目前还存在很多问题:1)快充Pack需要电池单体的高性能及单体间的低不一致性;2)对电池的监控和平衡需要更多传感器和电路控制的先进BMS;3)需设计先进的热管理系统以维持安全温度,降低电池和Pack内的温度差异。

快速充电策略

尽管材料层级的很多解决方案都有不错的效果,但其商业化在近期实现还很困难。研究者将快充解决方案转移到电池和Pack层级,以在短期内可以实现应用。充电策略的设计是解决此问题的关键。

6.1)充电策略

6.1.1)标准充电

CCCV是目前最常见的充电协议,即先恒流充电至截止电压(CC阶段),再恒压充至接近0的小电流(CV阶段)。恒压过程可以使电极材料内的离子浓度分布更均匀,对于材料发挥出高比容量至关重要;但恒压时的电流逐渐减小,使CV的充电时间明显比CC长。CC-CV充电模式的简单可操作性使其成为最广泛应用的标准充电协议。但是很多其他重点策略可以减少充电时间、提高充电效率、提高容量/功率保持率。图12展示了几种常见的快充策略曲线。


详述锂电池快充技术及其发展

图12 常见的快充策略曲线

a)恒流-恒压(CC-CV);

b)恒功率-恒压(CP-CV);

c)多阶段恒流-恒压(MCC-CV);

d)脉冲充电;

e)CC-CV-CC-CV模式持续充电(Boostcharging);

f)变电流充电(VCP)

6.1.2)多阶段恒流充电

许多研究提出调整充电过程的电流可以减缓电池的老化同时减少充电时间。这些研究的目的经常是减少产热,避免析锂或者减少机械应力。MCC是最早用于快充的策略之一,它包含了两步或多步的恒流阶段,后伴随着一个恒压阶段。由于开始充电的负极电位不容易下降到析锂电位,因此早期的CC阶段电流较大。但是一些研究者采取相反,即CC段电流逐渐增大的充电策略,这是因为电池内阻会逐渐降低。

6.1.3)脉冲充电

脉冲充电过程中,电流呈现周期性的变化,以降低浓差极化,避免局部电位变负或降低因局部锂离子脱嵌造成的机械应力增加

下面是脉冲充电曲线,主要包括三个阶段:预充、恒流充电和脉冲充电。如图13


详述锂电池快充技术及其发展

图13 脉冲充电曲线

在脉冲充电过程中,电池电压下降速度会渐渐减慢,停充时间T0会变长,当恒流充电占空比低至5%~10%时,认为电池已经充满,终止充电。

与常规充电方法相比,脉冲充电能以较大的电流充电,在停充期电池的浓差极化和欧姆极化会被消除,使下一轮的充电更加顺利地进行,充电速度快、温度的变化小、对电池寿命影响小,因而目前被广泛使用。

但其缺点很明显:需要一个有限流功能的电源,这增加了脉冲充电方式的成本。

6.1.4)增强充电

初始充电阶段用较大的平均电流,随后减小电流进行CC-CV充电。充电第一阶段可以是CC阶段(整个充电策略等同于MCC-CV),电池电压达到设置的最大电压后的CV阶段(CV-CC-CV),或者一个完整的CC-CV阶段(CC-CV-CC-CV)。相比于CC-CV,此策略设置更高的电流和电压以降低总的充电时间。但是,相同的充电时间下,增强充电相比于CC-CV的容量衰减更快,脉冲充电则和CC-CV没有明显区别。一些研究者表明,CC-CV适合于大功率的电池快充,MCC常用于容易析锂的充电场景

6.1.5)变电流充电

为了达到快充目的,研究者提出了一系列更复杂的变电流充电曲线,包括VCD,UVP等。随着电池老化,电流曲线需要根据相同电压下内阻的变化而调整。除老化因素外,电流在初始充电阶段总是很低,随即快速升高,这是由于0%SOC的电池内阻最大,之后迅速降低。最大电流常出现在较低SOC区,之后由于颗粒的嵌锂量增加,Li的传输受限等原因,电流逐渐减小。此外,充电过程中温度在电池和Pack内部的分布十分重要,但充电控制策略往往只将表面温度作为衰减主要因素考虑。

Schindler将图14不同充电策略结合对电池进行循环实验,并与CC-CV对比,研究电池在不同循环下的容量衰减。结果表明,结合所有充电策略进行循环实验,电池在800次循环后保持80%的容量,在所有循环中表现最好;只有CC-CV循环的电池衰减到相同容量仅用了400次;而CC-CV和冷降额结合的循环下,电池仅循环了330次,表现最差。


详述锂电池快充技术及其发展

图14 电流曲线:a) AC脉冲;b)冷降额;c)极化保留;d)脉冲充电

大多数快充策略只在标准温度和特定的电池构型中才有效。由于大电流会引起电极颗粒内部的更大机械应力,同时伴随显著的电流和温度分布不均匀,因此快充用于不同类型电池时需当心。当前很多充电策略的普适性还缺乏进一步的实验验证。随着电动车在低温地区的推广,需要更多低温下的快充策略的研究。此外,决定电池性能的是其本身温度而非环境温度,电池温度在充电过程中的变化也需要考虑。最后,Pack水平上不同充电策略的影响还亟待研究。


6.2)基于模型的策略优化

6.2.1)基于ECM模型的快充策略

一些研究者基于等效电路模型进行充电策略优化,他们利用公式将这些模型嵌入到单目标或多目标的优化约束问题。在这些问题中,一阶或高阶等效电路模型被用来描述电池行为,通过设置多个成本函数以达到最大的充电效率或最小的充电损失。

基于等效电路模型建立热-电-老化耦合模型,可以描述充电引起的热效应或电池老化,并且可以基于模型对电池升温和老化进行快充优化。除了常用的集总模型,一些强化的模型能分离电池内部和表面的温度,或提高大倍率下的仿真精度。结合充电倍率、活化能、总放电容量和温度等,可以利用阿伦尼乌斯公式准确模拟老化现象。

一旦优化问题的框架建立,就能根据成本函数和约束条件开发合适的算法进行快充控制。常见的算法包括:动态规划、Pontiac最小原则、遗传算法、LGR伪谱法和最小-最大策略等。

等效电路可以描述电池的外部特性,但是不能提供其内部状态信息,尤其是充电过程中的副反应,如SEI膜增厚、锂沉积等。因此,电化学模型受到了关注。


6.2.2)基于电化学模型的快充策略

电化学模型可以估计电池内部状态(固相/液相电势、离子浓度和反应流量等)以预测充电过程中的副反应,最常用的电化学模型是Doyle, Fuller和Newman提出的P2D模型。但是在全阶模型(FOM)中,求解偏微分方程(PDE)的计算量很大。因此,研究者们基于FOM进行了大量的简化工作以提高计算速率。一些模型也加入了副反应以更真实模拟电池内部情况。近年来,一些具有物理意义的ECM也可用于描述电池内部的电化学过程,且其参数辨识比P2D更简单。


综上所示,基于模型的优化充电优化通常优先使用ECM、SP、ROM等而非FOM,这是由于前者计算量小,更适用于实车应用。但这通常是以牺牲精确度为代价的,因此在某些滥用工况如快充模拟时需要小心验证。虽然目前已有许多基于模型的优化方法,但很少有模型结果能与实验数据完全吻合,而且这些吻合也仅适用于新鲜电池场景,针对电池长期的老化模型建立问题亟待解决。

热管理的影响

快充常伴随着大量产热与产热不均匀问题,低温下的大倍率充电对电池寿命和安全损伤很大。因此,有效的热管理对实现所有条件下的无损快充十分重要。电池热管理系统在不同温度的设计会有很大差异。冷却Pack时需要高的热导率,而低温时Pack则需要更好的热绝缘性以使自身保持足够热量。根据温度调节热导率是解决问题的一个方法。

7.1)冷却

电动车Pack常见的冷却媒介有空气、液体和相变材料(PCM)。空气冷却系统成本低且简单,但由于其热容较低热导率较差,空气冷却速率和温度一致性都较差,不适用于快充系统。液体的冷却效率比空气高3500倍,但其成本高、系统复杂且存在泄漏的可能。为了避免短路,冷却介质必须是绝缘体,常用的液体包括去离子水和矿物油。PCM冷却是利用材料的相变过程吸收电池产热,但其缺点也很明显:室温很高时,即使电池没有产热PCM也会完全融化,低热导系数的液态PCM反而会阻碍电池的散热。

由于快充不可避免会进一步恶化温度分布的不均匀性,高效均一的冷却技术相比于标准充电时更重要。电池内部相对于表面的导热性更差,同时电池表面通常和冷却系统连接,这些因素加剧了电池内外温度的分布的不均一性,在电池模组和Pack中也有类似问题。

最后,一些电动车充电桩在提升快充速率的同时,会根据充电条件配置相应的外部冷却系统。如果可以实现,这种方法将减少车载冷却系统的成本。


7.2)低温环境下的预热

锂离子电池的低温快充十分困难。本部分仅介绍快速加热整个电池的方法,因为快速加热对于快充而言不可或缺。内部加热法因其高效性和高度均匀性而受到青睐。常见的四种方法为:

1)自放电加热。这种方法效率较低;

2)电池驱动电热丝并配合风扇加热。这种方法加热速度相对较快但效率还不够高且加热不均匀;

3)双向脉冲加热。即将一个电池Pack分为两组等容量的电池,电量在两组电池之间进行脉冲交换,利用内阻进行加热。这种方法效率较高,主要受DC/DC转换的限制,仿真结果表明此方法可以在120s内将2.2Ah的18650电池从-20℃加热到20℃;

4)交流电加热。这种加热的方法更快,但其对电池老化和循环稳定性的影响尚不明确。设计锂离子电池构型以实现快速预加热也是解决低温快充的途径之一。例如,可以在两层单面的负极层中间插入电化学分离的镍箔,通过开关控制直流电流流经镍箔进行快速加热。

尽管内部加热方法更有效且使温度分布更均匀,但内部加热与快充耦合对电池循环寿命影响的研究还很少。由于电流更容易经过低电阻区域,相应区域温度会升高,因此即使预热导致的很小的温度梯度也会在快充时被放大。由于内部温度难以从实验上测量,因此需要进行

【免责声明】
1、车城网发表的该观点仅代表作者本人,与本网站立场无关,如有侵犯您的权益,请联系立删。
2、版权归原作者所有,车城网平台仅提供信息存储空间服务。
车城圈
买车、用车、养车等有关车交流的小圈子,期待您的加入!